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Noise-induced instability: An approach based on higher-order moments
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Noise-induced transitions in the organization of systems far from equilibrium have been of vital interest.
Although the effects of additive and multiplicative noise have been widely studied, it is only the multiplicative
noise that can be dealt with within the scope of a linear analysis of first moments of the spatiotemporal
perturbations, by the application of Novikov’s theorem. For the case of additive noise, the corresponding
straightforward linear analysis of the first moment throws no light on the effect of the noise on stability
conditions. We propose here a simple approach based on higher-order moments to show how additive noise can
give rise to noise-induced instability in spatially extended systems, at times leading to pattern formation. Our
theoretical analysis is corroborated by numerical simulations on two simple one-component reaction-diffusion
systems in two dimensions.
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I. INTRODUCTION therefore has resort to correlation or structure functions
. ) o , _.within linear approximation and the mean field approg&h
Noise-assisted and noise-induced processes in nonequili}-has peen showfll] that, based on a Langevin—Fokker-
rium systems have received wide attention over the last tW@|gnck hybrid approach, the mean field model can predict
decades. The examples include stochastic resonance, COhg{yt the application of external noise may advance the loca-
ence resonance, noise-induced phase transitions, nOiSgsn of the critical point for strong spatial coupling, and delay
induced transport in Brownian motors, etc., only to name 3¢ for weak coupling in spatially extended systems. Within
few [1-4]. Of these, noise-induced instability leading t0 in- the mean field description, the additive noise can signifi-
homogeneity and spatial structure formation has proved to b@antly shift the boundaries of phase transiti¢hg] in non-
of importance for the study of self-replicating systems, eleCyinear chains induced by multiplicative noise. It can also
trodynamic convection in nematic liquid crystdla a ther-  change the properties of intermittency and stabilize oscilla-
mal environment with stochastic voltage fluctuationso-  ions[13].
main coarsening of patterns, ef6—7]. While multiplicative Our aim in this paper is to understand the role of higher-
noise processes have a very special role in these and relatgghjer moments in determining the stability conditions for the
nonequilibrium phenomena, the role of additive noise is alschomogeneous state of spatially extended one-component sys-
very subtle. For example, the presence of additive noise is gams “in the presence of noise and diffusion. We treat both
condition for spatial pattern formation in the self-replicating aqgjtive and multiplicative noises in the stochastic dynamics
Gray-Scott modef5], the Swift-Hohenberg model for turbu-  ang show that the role of cubic nonlinearity is very special in
lence([8], etc. the context of additive noise. Our theoretical analysis is cor-

The effect of multiplicative noise can be taken into ac-oporated by numerical simulations on two specific systems.
count in the stability analysis by calculating the first

moments of the spatiotemporal perturbations around the
steady state, obeying linearized equations, with the help of
Novikov's theorem[9]. A systematic development in this
spirit was carried out earlig¢d 0] for studying bifurcations in
spatially extended systems which exhibit Symrr‘etr3/'bre"’“<inQeaction-dif‘fusion equation for a one-component system but
instability, and for the determination of the thresholds of thein multiple dimensions, as a stochastic partial differential
full nonlinear system. Special attraction has been focused O@quation with a muItipI}cative and an additive noise term
Ginzburg-Landau and Swift-Hohenberg equations in which ' '
spatially distributed multiplicative noise was treated in simu- U = f(U) + DV2u+ &R HUR 1) + 7(%,) (2.1)
lations in two dimensions, with an objective of estimating ! ' ' Y '

the shift of threshold. Since the multiplicative noise givesyhere u(x,t) is our concerned variablei(u) specifies the
rise to a drift term, one can incorporate the effect of this|gcq| reaction kinetics in terms of the functional dependence
noise in a linear analysis. The corresponding straightforward, ine variable, an® denotes the diffusion coefficient. The

analysis of linearized, averaged dynamics of the spatiotemsqgitive noise termy(X,t) and the multiplicative noisé(x,t)

poral perturbation for additive noise does not reflect the efy .o mutually independent in time and space and are both

fect of noise. To explore the effect of additive noise, one.ynsidered to be Gaussian, white noise sources with zero
mean and correlation as given by

Il. THE ONE-COMPONENT MODEL AND NOISE-
INDUCED INSTABILITY

We consider the simplest form of the noise-induced

*Electronic address: pcdsr@mahendra.iacs.res.in (p(X,t)p(X',t"))=2D,8(X - X') St —t'), (2.2
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(ERDER ) = 2DedX-K)8t-t). (2.3 (&) =2CE 81, (212
Here D, and D¢ refer to the strength of additive and multi- WhereD.=Ci'_J-(Ax)” andDE:CiE_j(Ax)n for ann-dimensional
plicative noises, respectively. space. We have absorbed the numerical factor for averaging

We assume the existence of a spatially uniform steadyver co8k-X in C{_; andCF;.
stateu=u, of the dynamical system such that We now construct the equations of motion for moments

with the help of Eq.(2.10:
f(ug) =0 (2.9
. T . 5([&-'|]> 2 3 5

and furthermore assume that this state is linearly stable with———— =[f,— Dk“+ Cg](du;) + fu3<5U >+ u5<5U )
respect to spatially homogeneous perturbation, i.e., stable in
the absence of diffusion: 1 o1

o +mfu2n—1<5ui >, (2.13)

{—} =f,<0. (2.5
Mg X[ouP) ,
=" =2C(8u) + 2[f, ~ DKF(au?) + 2C(au)
Expandingf(u) in a Taylor series about this steady valuyg ot
to all orders inéu, we have, 2
+ éfu3<5ui4> + e
Ug + U
Ol * 2) = f(up+ 8u) + DV(Ug + 8u) + £(Ug + Su) + 7.
o + 2 fuan-3(6u2"2)
(2.6) 224 n-2) 1 (n-1! " b

We now express the spatiotemporal perturbation as (2.14

>0 = S c g Sul? 3

SU(X,t) = Au(X, t)cosk - X (2.7) AU _ o _pres 2 )+ | .+ 9Cc (o)
" . ot 8
and additive noise as
3 2n—1
7(X,t) = n(X,t)cosk - X. (2.8 toe A 22n-4(n -2)1(n-1)! fuan-s(U™ ),

Now, we note that c@8=(1/22M[=1-22(%")cos 2n (2.15

~k)x+(*)] and codix= (1/22“‘2)[2E:(1)2(2” 1)cos(2n 2K .nd so on.
-1)x]. By comparing the coefficients of cksi,_wezh@/e for The infinite hierarchy of the above set of equations must
the envelope function of short wavelengfRsu<k?su be truncated to obtain a closed set of equations for the mo-
R ments. For this we have
S ou(x,t)] e 1. 33 1 .5
— =[f,- Dk ](SU+—|fu36U +_If 5OU— + -+ 5<[(5U-]2n_l>
a o4 s 8 = (2n- D[f, - DKZOFY. (2.1
&t
oy 1 (2n-1)!
* (2n-1)! Fuan-2 U™ 250 (n-1)!nl In deriving the above set of equatiof®s13—2.16, we have
R, made use of Novikov's theorefii4] in discretized space for
+ (X t)ou+ n(x.t) (2.9  Gaussian noise procesd&, viz.,
wheref,, fe,..., etc. are the coefficients of the Taylor series (g(8u) ) = CLg(du) g’ (duy)), (2.17)
of f(u), evaluated at the steady state.

In a dlscretg lattice oN cells, the stochastic parnal dif- (g(8u) &) = Ce(g(dug’ (8uy)). (2.18
ferential equation now takes the fortfor convenience, we S £
drop the overbar frondu and 7)) For simplification, here we have denot@b_lj asC andCi;

asCg for &;.

S ou(t)] The system of equations for the momelis13—2.16

5; =[f,— Dk*ou; + 3_fu3‘5U| 4 5,fu5‘m| 8 can be put compactly in the form of a matrix equation as
1 . 1 (2n-2) - -
fanm1ou? ™ ——— = :
(2n- 1)1 T Iy L=AL (.19
+ &)U + 7 (0). (2.10 where L is a vector comprising the components

[oudy, (CouT?, [oul®), ..., (dul™%; and A is a (2n
In this discretized space, the noise correlations acddle —1)x (2n-1) matrix, as shown in the Appendix.

the following form: While constructing the set of equatiof.19 from the
) | , basic equatiori2.10), a close look reveals that noise appear-
(m(O)7(t')) = 2Cjot - t'), (2.1D ing in all the equations, viz., for
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s - <(f,+2C,)/D for condition(ii). The existence of a range of

Lour],[ou’],[ouf],...,[ouT ] wave numbers indicates that the fluctuation in a certain wave

number range only, may exhibit noise-induced instability.
Several pertinent points may now be noted.

(@ In the absence of additive noise, an analysis of the
linearized equation for the first moment &f;(t) for multi-
plicative noise, using Novikov's theorem, is sufficient to
reach the condition(i). However, in the case of additive

, iIs multiplicative in nature, although in the parent equation

(2.10, for [4u;], the noise appears in both multiplicative and
additive form. Subscripts andE in C, and Cg indicate the
parentage of the noise strengths expressed in (2dkl) and

(2.12. . . . . noise, the analysis of higher-order moments is necessary for
To examine the stability, we now con3|def the solutlonsthe stability analysis to reach the conditiéin.
[15] of equations of the moments in the forinft) ~ e (A (b) The existence of a range of wave numbers and the
being the frequendyto write the following determinantal interplay of diffusion and noise are reminiscent of diffusion-
equation for the eigenvalue problem: driven instability leading to Turing pattern formatig@6].
_ However, while Turing instability requires the diffusion co-
[A-M|=0, (2.20 efficients of the two species to differ significantly and fol-
wherel is the unit matrix of dimensiofi2n—1) X (2n-1). lows from a linear analysis, the present analysis is concerned
Expanding the above determinant, we have with moments of arbitrarily high orders. The dispersion rela-
tions in the two cases are thus distinctly different.
[f,— Dk?+ Cg = N][2(f, = DK?) = N][3(f, = DK? + 2C)) = \] (o) Itis also worth discussing the relation between the
_ P2 _ A2 condition (2.24) and predictions from the mean field theory
X[A(fy = DI =] X 5(F, = Dk = A ] X about the influence of additive noise. The key point in the
X [(2n-1)(f,—~ Dk?) - \]=0, (2.21)  later approach is the replacement of the spatial coupling of a

particular cell site to its neighbors by coupling to an average

which can be solved to obtain the eigenvalues value or mean field. Since the average is taken with a prob-

A =f,— DK+ Cg, ability distribution function satisfying a Fokker-Planck equa-
tion, the mean field theory is a Fokker-Planck—Langevin hy-
A, = 2(f, - DK?), brid approach. The method takes care of nonlinearity but
discards the details of correlations, to obtain the steady state
3= 3(f,— DK2 + 2C)), solutions for mean values and hence determine the stability.

The present approach on the other hand, takes care of higher-
order moments, which effectively determine the stability of
the mean of the spatiotemporal perturbations.

(d) Aclose look at Eq(2.9) reveals that the spatiotem-
poral perturbation with cosine spatial periodicity picks up the
harmonic components from cubic and higher-order odd non-
linearities. Again, from the set of equatio(&22) it is clear
that cubic anharmonicity plays a lead role in inducing noise-
driven instability and spatial inhomogeneity for additive
noise.

In what follows, we examine in the next section two
simple examples dominated by cubic nonlinearity. For initia-
Non-1= (20 = 1)(f, = DKY). (2.22 tion of stationary pattern formation we also explore the role
We are led to the important conclusion that only terms up?f long-range diffusion in one of these models.
to the third order contribute toward the noise effect in the Il SPECIFIC EXAMPLES AND NUMERICAL
time evolution of the variable for a reaction-diffusion system ' SIMULATIONS
in one dimension.
The conditionk=0 in the absence of noise corresponds to A. The arsenous acid—iodate system
neglect of diffusion and thus by definition, perturbations of The arsenous acid—iodate moddl7,1§ is actually a
zero wave number are stable when diffusion sets in. AgaiRomposite of two reactions, viz., the Dushman reaction and
for k#0 and in the absence of noise the system remaing,e Roebuck reaction. This model has received attention over
homogeneously stable to all orders, sirige:0. ) the last three decades for the study of wave-front propaga-
The instability due to noise sets f.e., ReN(k)>0]  fion, In later years, the model was simplified into a one-
when at least one of the following conditions is satisfied: zriaple systenii17]. Here, we carry out a study of the one-
(i) Cg>DK-f,, (2.23  variable system in the presence of additive noise in a two-
dimensional space. The chemical reaction under
consideration i$18]

103 + 3HzASO; + 51 — 61~ + 3H,ASO,.

Therefore the range df values for which Re is posi-  The rate equation for this reaction has been deciphered to be
tive is 0<k?<(f,+Cg)/D for condition (i) and 0<k® [19]

Ny =4(f,— DK?),

A= 5(f,— DK?),

(i) C > %[Dkz - fl. (2.24
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d[i] o . SR -0.126
—— = (ka + k[ITDIT]([1Oz]o - [I"D[HT]". (3.1 ] (@) (b)

at
»-0.128
With [I-]=u, our variable of interestiH*]=h, a constant, l

and[103]o=1,, the initial arsenous acid concentration, a con-  .g.130 -
stant,k,=k; andk,=kj, the kinetic constants, the rate equa-

tion now takes the form 0 40 80 120
u_ (ky + kou)u(ly — u)h? = f(u) (3.2 ©
st e ‘ ' 0.004
The above equation admits of three steady states of the dy_~ 0.000
namics, viz.,
-0.004
Up=lg —ﬁ 0. (3.3 0 40 80 120 160
) k2! k2

Adding the diffusion terms and an additive noise term, we [iG. 1. The arsenous acid—iodate syste@. Plot of A5 vs

have k? (\j<0, fori#3); (b) time evolved spatial patterns for the pa-
Su Su Su rameter set mentioned in the text a@g=0.0, Cc=0.0; (c) plot of
— = kllohzu - klhzu2 + k2I0h2 2- k2h2u3 + D<—2 + —2> N3 vs k? (\j<O0, fori=+3); (d) time evolved spatial patterns for the
ot x= oy parameter set mentioned in the text & 0.0645,C=0.0.

+ 7. (3.9

convection[7,8,20-22. The model characterized by a cubic

nonlinearity and a higher-order diffusion tertthe Swift-

fu= (kg + ko) (1o — u)h? + kou(l o — u)h? = (kq + kou)uh?, Hohenberg coupling ternj23], written in terms of the com-

(3.5 ponentu(r,t) in two dimensions, is

Proceeding as we did in Sec. Il, we have

The experimentally admissible paramet¢i®] are given au(r,y) _
by k;=4.5x10°M3s%; k,=1.0X10°M™#s™!, D=2x107° -
cn? s, 15=5.0x 10°M, andh=7.1x 103M. _ . .
At the steady statésay, foruy=1,), we have in our earlier WhereI is a control parameter. Numerical studies of the
notationf,=—(k; +kolo)1oh? a negative quantity, indicating a System have been carried out by a number_of groups. Garcia-
homogeneous stable state. The dispersion relation, i.e., tfgjalvo et al. [8] have shown numerically simulated pattern
variation of\ vs K2, is given byh,=3(f,~Dk2+2C,), since formation in the presence of multiplicative and additive
all other\’s (i=1,2,4,5,..) are negative, an@z=0, the mul-  NOISe terms and al§0 a Ilngar stab|I|ty analysis in Fhe presence
tiplicative noise being absent. For the given set of parameter@ multiplicative noise. While the earlier analysis is based on
the instability sets in for the noise strengi™ 0.0635. structure funpt_lons w_|t_h|n Imear_apprommatlon, here_ we pro-
In order to examine the stability analysis numerically weVide an explicit stability analysis for a system having both
now use the explicit Euler method for the integration of thelYPeS Of noises in terms of higher-order moments and draw a
stochastic partial differential equatioi3.4), following the ~ comparison to the numerical simulations in the various pa-
discretization of space and time. A finite system size of@Meter ranges,
128x 128 points, with periodic boundary conditions has Su(r t)
been chosen. A time intervalt=0.005 and a cell siz&x —
=1.0 have been found to be appropriate for the purpose. The o

noise has been discretized and simulated by means of a ralhere £(r 1) is a multiplicative noise andy(r 1) refers to

dom Gaussian noise generator. We have carried out our ny-, .. ; . .
. ) . . : additive noise. Both of the noise processes are Gaussian and
merical simulations for different values @, ranging from

0.0 t0 20 0. It has been observed that in the above paramet\évrh'te' The fluctuations of additive noise are of internal ori-

. S In. On the other hand, the multiplicative noise describes the
range, there is a significant change of state from homogene-

ity [Fig. 1(c)], to an inhomogeneous state with a notapleeternal fluctuations in the temperature gradient. The pri-

spatial patterfiFig. 1(d)]. A comparison between the disper- mary aim of the model as well as the introduction of noise is
P pa g : P Py PET™ {0 understand the nature of shift of the boundary of instabil-
sion relations in terms of the plots &f vs k“ [Figs. 1a) and

: . . _ ity, which, for example, explains the transition of the system
}(b)] and _the numerical S'm.“""?t'on fo€;=0.0 and G from a homogeneous state to a convective ordered state. Pro-
=0.0645[Figs. 1c) and 1d)] indicates that these results

agree very well with the predictions made by our analysis. ceeding as earlier, we get the discretized equations as

T'u-(1+V®»2u-ud (3.6

=[C+&r,Dlu=-(1+V?2u-u+ 7t (3.7)

B. The Swift-Hohenberg equation @ S[T+é-1+2%-K- 3U(2)](5ui) - §(&|i)3 + 7,
The Swift-Hohenberg system is a nonlinear model of the 4
reaction-diffusion system used to study the Rayleigh-Benard (3.9
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FIG. 2. The Swift-Hohenberg model. Plot ®f,\,, and\; vs k?
for dimensionless parametel’s=0.37,Dg=0.01,D,=0.001.

FIG. 3. The Swift-Hohenberg modefa) Plot of A; vs k2(\;
:%AZ:%A3< 0); (b) time evolved spatial patterns for dimensionless
parameterd’=0.37,Dg=0.0,D,=0.0; (c) plot of A3 vs kK’(A;,\,

2
M =2T+¢-1+ K2 — KA — SUS](&Ji)Z _ §(&Ji)4 <0); (d) time evolved spatial patterns for dimensionless parameters
ot 2 I'=0.37Dg=0.0,0,=0.001; (¢) plot of A; vs k’(A\,<0;0<A\g
N <)\yp); (f) time evolved spatial patterns for dimensionless param-
*2(8u) (3.9 etersI'=0.37,Dg=0.01,D,=0.001.
8(ou;)® 9
AR g1 s - 1420 K- 38U - (o0
N2 Averaging over the equations and considering solutions of
+ 3(0u)"m- (310 the moments, we have the following determinantal equation
Here,u, is the steady state value of the concentration. for the eigenvalue problem:
|
2 2 3
[(T-1+2&?-K'—-3u§+Cg) —\] 0 "2
2C, [2T -1+ 2% -k*-3ud) - \] 2Ce =0.
0 0 [BT-1+22-k*-3u3+2C) -]
(3.1

It is to be noted that we consider only up to the third variation of eigenvalued;, \,, and \5 vs k? in Fig. 2 for
moment, as the higher terms do not contribute toward th&=0.37,Cz=0.042, andC,=0.0042. The range df values
noise effect, as elaborated in Sec. Il. The eigenvalues a@r which \(k?) is positive is shown. The largest eigenvalues
given by over a range of admissible wave numbers for different pa-
rameter values have been depicted in Figs. 3 and 4 in the

— 2
A= (0 =1+2¢ -k~ 3ug+ Ce), (3.12 presence and absence of additive and multiplicative noises,
since the instability is ensured if the largest eigenvalue is
Ap=2(I-1+22-K-3ud), (3.13  positive.
We now carry out numerical simulations on Eg§.7) us-
Ag=3(-1+22-k*-3u3+2C). (3.14  ing the explicit Euler method, with a system grid size of

128% 128 cells and with periodic boundary conditions. A
Now, for the real steady stateg(0,+(I'-1)"?) we must time interval At=1.7X 103 and a mesh sizeAx=0.4870
haveI'=1.0. We choose the homogeneous steady sigte were taken. The noises have been generated by means of a
=0 for the present analysis. Proceeding according to our earandom Gaussian noise generator. The multiplicative noise
lier stability analysis, we plot the dispersion relations as thenas been used in the Stratonovich sense. The value of noise
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(i) We have determined an analytical threshold condition
for the instability induced by additive noise on reaction-
diffusion systems. Our analysis is equipped to deal with mul-
tiplicative noise processes as well. The theoretical estimates
of the threshold in model systems correspond fairly well to
the results of numerical simulation studies.

(i) In contrast to mean field approaches, where the de-
tails of correlations are neglected, the instability conditions
derived by the present approach are based on higher-order
moments where coupling to lower orders is appropriately
taken care of.

(iii) Our study indicates that the cubic and odd nonlin-
earities are of special type since their contribution is picked
up as the harmonic components that determine the structure
of stability matrix and dispersion relations. Since cubic non-
linearity is almost ubiquitous in all major areas of nonlinear

k*(\2,A3<0); (b) time evolved spatial patterns for dimensionless gynamics, we believe that the role played by this nonlinear-

parameters'=-0.05,Dg=0.1,D,=0.001; (c) plot of Az vs

ity in the context of additive noise, in inducing instability

k2(\1,A2<0); (d) time evolved spatial patterns for dimensionless 5nq pattern formation, is generic and makes the perspective

parameters I'=0.05,Dg=0.0,D,=0.001; (e
k?(A1,A»,<0); (f) time evolved spatial patterns for dimensionless
parameterd’=0.0, Dg=0.0, D;=0.001.

plot of A3 vs

of noise-induced transition much wider.

We hope this approach will be useful for exploring noise
in pattern formation and selection in spatially extended sys-
tems with more than one variable.
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strengthDg=0.01, the presence of additive noise with a finite
positive strength gives rise to a labyrinthine pattéRig.
3(f)]. A comment on Fig. @) may be pertinent. We find that
this pattern is less developed than the one in Fig@),3al-
though the eigenvalue graph in FigieBis well inside the
instability region. A plausible reason is that the application of
both additive and multiplicative noises makes more than on
eigenvalue positivé\;,A3>0,\,<0), which may result in
the interference of different noise-induced modes, thus lead-
ing to a blurring of patterns. The numerically simulated pat-
terns obtained fol’=0.05, 0.0, and -0.05, and the corre-
sponding plots of dispersion relations are shown in Fig. 4.
The results of the numerical simulations show, in general, a
good conformation to the theoretical analysis.

IV. CONCLUSION

In this paper we have studied the effect of noise in induc-
ing instability on a homogeneous stable state of one-
component reaction-diffusion systems. It has been shown
that, while it is sufficient to consider the linear equation of
motion for the first moment of the spatiotemporal perturba-
tion for multiplicative noise, the analysis of higher-order mo-
ments is imperative in the case of additive noise for an un-
derstanding of the role of noise.

We now summarize the main conclusions of this study. and
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APPENDIX

{Loul)
([ouT?
([ouT®
([oul?
([6u>

([ouT"™)

The (2n—-1) component vectot and the matrixA of di-
?nension(Zn—l) X (2n-1) are given by

(A1)
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1 1 1 1
[f,- DK?+C¢] 0 éfua 0 mfus 0 [mafuzn—l}
2 2 1
2C, 2(f,— DKk?) 2Ce éfuz 0 {mmfum—s 0
3 3 1
- 2 = - -
0 0 3(fy,— Dk*+2C) 0 |:8fu3+9CE] 0 [22n_4(n_2)! n- 1)Ifu2n—3:|
0 0 0 4(f,— DK? 12C ;;f 0
A= (fu=Dk) o[22 (-3 (n-21
5 1
- 2 - - -
0 0 0 0 5(f,-Dk%) ... 0 [22”‘6(n—3)! = 2)!fu2n_5:|
0 0 0 0 0 0 (2n-1)(f, - DK?)

(A2)
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