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Noise-induced transitions in the organization of systems far from equilibrium have been of vital interest.
Although the effects of additive and multiplicative noise have been widely studied, it is only the multiplicative
noise that can be dealt with within the scope of a linear analysis of first moments of the spatiotemporal
perturbations, by the application of Novikov’s theorem. For the case of additive noise, the corresponding
straightforward linear analysis of the first moment throws no light on the effect of the noise on stability
conditions. We propose here a simple approach based on higher-order moments to show how additive noise can
give rise to noise-induced instability in spatially extended systems, at times leading to pattern formation. Our
theoretical analysis is corroborated by numerical simulations on two simple one-component reaction-diffusion
systems in two dimensions.
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I. INTRODUCTION

Noise-assisted and noise-induced processes in nonequilib-
rium systems have received wide attention over the last two
decades. The examples include stochastic resonance, coher-
ence resonance, noise-induced phase transitions, noise-
induced transport in Brownian motors, etc., only to name a
few f1–4g. Of these, noise-induced instability leading to in-
homogeneity and spatial structure formation has proved to be
of importance for the study of self-replicating systems, elec-
trodynamic convection in nematic liquid crystalssin a ther-
mal environment with stochastic voltage fluctuationsd, do-
main coarsening of patterns, etc.f5–7g. While multiplicative
noise processes have a very special role in these and related
nonequilibrium phenomena, the role of additive noise is also
very subtle. For example, the presence of additive noise is a
condition for spatial pattern formation in the self-replicating
Gray-Scott modelf5g, the Swift-Hohenberg model for turbu-
lencef8g, etc.

The effect of multiplicative noise can be taken into ac-
count in the stability analysis by calculating the first
moments of the spatiotemporal perturbations around the
steady state, obeying linearized equations, with the help of
Novikov’s theoremf9g. A systematic development in this
spirit was carried out earlierf10g for studying bifurcations in
spatially extended systems which exhibit symmetry-breaking
instability, and for the determination of the thresholds of the
full nonlinear system. Special attraction has been focused on
Ginzburg-Landau and Swift-Hohenberg equations in which
spatially distributed multiplicative noise was treated in simu-
lations in two dimensions, with an objective of estimating
the shift of threshold. Since the multiplicative noise gives
rise to a drift term, one can incorporate the effect of this
noise in a linear analysis. The corresponding straightforward
analysis of linearized, averaged dynamics of the spatiotem-
poral perturbation for additive noise does not reflect the ef-
fect of noise. To explore the effect of additive noise, one

therefore has resort to correlation or structure functions
within linear approximation and the mean field approachf3g.
It has been shownf11g that, based on a Langevin–Fokker-
Planck hybrid approach, the mean field model can predict
that the application of external noise may advance the loca-
tion of the critical point for strong spatial coupling, and delay
it for weak coupling in spatially extended systems. Within
the mean field description, the additive noise can signifi-
cantly shift the boundaries of phase transitionsf12g in non-
linear chains induced by multiplicative noise. It can also
change the properties of intermittency and stabilize oscilla-
tions f13g.

Our aim in this paper is to understand the role of higher-
order moments in determining the stability conditions for the
homogeneous state of spatially extended one-component sys-
tems, in the presence of noise and diffusion. We treat both
additive and multiplicative noises in the stochastic dynamics
and show that the role of cubic nonlinearity is very special in
the context of additive noise. Our theoretical analysis is cor-
roborated by numerical simulations on two specific systems.

II. THE ONE-COMPONENT MODEL AND NOISE-
INDUCED INSTABILITY

We consider the simplest form of the noise-induced
reaction-diffusion equation for a one-component system but
in multiple dimensions, as a stochastic partial differential
equation, with a multiplicative and an additive noise term,

ut = fsud + D¹2u + jsxW,tdusxW,td + hsxW,td, s2.1d

where usxW ,td is our concerned variable,fsud specifies the
local reaction kinetics in terms of the functional dependence
on the variable, andD denotes the diffusion coefficient. The
additive noise termhsxW ,td and the multiplicative noisejsxW ,td
are mutually independent in time and space and are both
considered to be Gaussian, white noise sources with zero
mean and correlation as given by

khsxW,tdhsxW8,t8dl = 2DIdsxW − xW8ddst − t8d, s2.2d*Electronic address: pcdsr@mahendra.iacs.res.in
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kjsxW,tdjsxW8,t8dl = 2DEdsxW − xW8ddst − t8d. s2.3d

HereDI andDE refer to the strength of additive and multi-
plicative noises, respectively.

We assume the existence of a spatially uniform steady
stateu=u0 of the dynamical system such that

fsu0d = 0 s2.4d

and furthermore assume that this state is linearly stable with
respect to spatially homogeneous perturbation, i.e., stable in
the absence of diffusion:

F df

du
G

u=u0

= fu , 0. s2.5d

Expandingfsud in a Taylor series about this steady valueu0

to all orders indu, we have,

dsu0 + dud
dt

= fsu0 + dud + D¹2su0 + dud + jsu0 + dud + h.

s2.6d

We now express the spatiotemporal perturbation as

dusxW,td = dūsxW,tdcoskW ·xW s2.7d

and additive noise as

hsxW,td = h̄sxW,tdcoskW ·xW . s2.8d

Now, we note that cos2nx=s1/22ndfok=0
n−12s 2n

k dcos 2sn
−kdx+s 2n

n dg and cos2n−1x=s1/22n−2dfok=0
n−12s 2n−1

k dcoss2n−2k
−1dxg. By comparing the coefficients of coskW ·xW, we have for
the envelope function of short wavelength¹2dū!k2dū

dfdūsxW,tdg
dt

= ffu − Dk2gdū +
1

3!
fu3dū33

4
+

1

5!
fu5dū55

8
+ ¯

+
1

s2n − 1d!
fu2n−1dū2n−1 1

22n−2

s2n − 1d!
sn − 1d ! n!

+ jsxW,tddū + h̄sxW,td s2.9d

wherefu, fu3,…, etc. are the coefficients of the Taylor series
of fsud, evaluated at the steady state.

In a discrete lattice ofN cells, the stochastic partial dif-
ferential equation now takes the formsfor convenience, we
drop the overbar fromdū and h̄d

dfduistdg
dt

= ffu − Dk2gdui +
1

3!
fu3dui

33

4
+

1

5!
fu5dui

55

8
+ ¯

+
1

s2n − 1d!
fu2n−1dui

2n−1 1

22n−2

s2n − 1d!
sn − 1d ! n!

+ jistddui + histd. s2.10d

In this discretized space, the noise correlations acquiref3g
the following form:

khistdh jst8dl = 2Ci−j
I dst − t8d, s2.11d

kjistdj jst8dl = 2Ci−j
E dst − t8d, s2.12d

whereDI =Ci−j
I sDxdn andDE=Ci−j

E sDxdn for ann-dimensional
space. We have absorbed the numerical factor for averaging
over cos2kW ·xW in Ci−j

I andCi−j
E .

We now construct the equations of motion for moments
with the help of Eq.s2.10d:

dkfduigl
dt

= ffu − Dk2 + CEgkduil +
1

8
fu3kdui

3l +
5

5 ! 8
fu5kdui

5l

+ ¯ +
1

22n−2sn − 1d ! n!
fu2n−1kdui

2n−1l, s2.13d

dkfduig2l
dt

= 2CIkduil + 2ffu − Dk2gkdui
2l + 2CEkdui

3l

+
2

8
fu3kdui

4l + ¯

+
2

22n−4sn − 2d ! sn − 1d!
fu2n−3kdui

2n−2l,

s2.14d

dkfduig3l
dt

= 3ffu − Dk2 + 2CIgkdui
3l + F3

8
fu3 + 9CEGkdui

5l

+ ¯ +
3

22n−4sn − 2d ! sn − 1d!
fu2n−3kdui

2n−1l,

s2.15d

and so on.
The infinite hierarchy of the above set of equations must

be truncated to obtain a closed set of equations for the mo-
ments. For this we have

dkfduig2n−1l
dt

= s2n − 1dffu − Dk2gkdui
2n−1l. s2.16d

In deriving the above set of equationss2.13d–s2.16d, we have
made use of Novikov’s theoremf14g in discretized space for
Gaussian noise processesf3g, viz.,

kgsduidhil = CIkgsduidg8sduidl, s2.17d

kgsduidjil = CEkgsduidg8sduidl. s2.18d

For simplification, here we have denotedCi−j
I asCI andCi−j

E

asCE for di j .
The system of equations for the momentss2.13d–s2.16d

can be put compactly in the form of a matrix equation as

LW
·

= ALW s2.19d

where LW is a vector comprising the components
kfduigl , kfduig2l , kfduig3l ,… , kfduig2n−1l; and A is a s2n
−1d3 s2n−1d matrix, as shown in the Appendix.

While constructing the set of equationss2.19d from the
basic equations2.10d, a close look reveals that noise appear-
ing in all the equations, viz., for
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fdui
2g

·

,fdui
3g

·

,fdui
4g

·

,…,fdui
2n−1g
·

, is multiplicative in nature, although in the parent equation

s2.10d, for fduig
·

, the noise appears in both multiplicative and
additive form. SubscriptsI andE in CI andCE indicate the
parentage of the noise strengths expressed in Eqs.s2.11d and
s2.12d.

To examine the stability, we now consider the solutions

f15g of equations of the moments in the formLW std,elt sl
being the frequencyd to write the following determinantal
equation for the eigenvalue problem:

uA − lI u = 0, s2.20d

whereI is the unit matrix of dimensions2n−1d3 s2n−1d.
Expanding the above determinant, we have

ffu − Dk2 + CE − lgf2sfu − Dk2d − lgf3sfu − Dk2 + 2CId − lg

3f4sfu − Dk2d − lg 3 f5sfu − Dk2d − lg 3 ¯

3 fs2n − 1dsfu − Dk2d − lg = 0, s2.21d

which can be solved to obtain the eigenvalues

l1 = fu − Dk2 + CE,

l2 = 2sfu − Dk2d,

l3 = 3sfu − Dk2 + 2CId,

l4 = 4sfu − Dk2d,

l5 = 5sfu − Dk2d,

·

·

·

l2n−1 = s2n − 1dsfu − Dk2d. s2.22d

We are led to the important conclusion that only terms up
to the third order contribute toward the noise effect in the
time evolution of the variable for a reaction-diffusion system
in one dimension.

The conditionk=0 in the absence of noise corresponds to
neglect of diffusion and thus by definition, perturbations of
zero wave number are stable when diffusion sets in. Again
for kÞ0 and in the absence of noise the system remains
homogeneously stable to all orders, sincefu,0.

The instability due to noise sets infi.e., Relsk2d.0g
when at least one of the following conditions is satisfied:

sid CE . Dk2 − fu, s2.23d

sii d CI .
1

2
fDk2 − fug. s2.24d

Therefore the range ofk2 values for which Rel is posi-
tive is 0,k2, sfu+CEd /D for condition sid and 0,k2

, sfu+2CId /D for conditionsii d. The existence of a range of
wave numbers indicates that the fluctuation in a certain wave
number range only, may exhibit noise-induced instability.

Several pertinent points may now be noted.
sad In the absence of additive noise, an analysis of the

linearized equation for the first moment ofduistd for multi-
plicative noise, using Novikov’s theorem, is sufficient to
reach the conditionsid. However, in the case of additive
noise, the analysis of higher-order moments is necessary for
the stability analysis to reach the conditionsii d.

sbd The existence of a range of wave numbers and the
interplay of diffusion and noise are reminiscent of diffusion-
driven instability leading to Turing pattern formationf16g.
However, while Turing instability requires the diffusion co-
efficients of the two species to differ significantly and fol-
lows from a linear analysis, the present analysis is concerned
with moments of arbitrarily high orders. The dispersion rela-
tions in the two cases are thus distinctly different.

scd It is also worth discussing the relation between the
condition s2.24d and predictions from the mean field theory
about the influence of additive noise. The key point in the
later approach is the replacement of the spatial coupling of a
particular cell site to its neighbors by coupling to an average
value or mean field. Since the average is taken with a prob-
ability distribution function satisfying a Fokker-Planck equa-
tion, the mean field theory is a Fokker-Planck–Langevin hy-
brid approach. The method takes care of nonlinearity but
discards the details of correlations, to obtain the steady state
solutions for mean values and hence determine the stability.
The present approach on the other hand, takes care of higher-
order moments, which effectively determine the stability of
the mean of the spatiotemporal perturbations.

sdd A close look at Eq.s2.9d reveals that the spatiotem-
poral perturbation with cosine spatial periodicity picks up the
harmonic components from cubic and higher-order odd non-
linearities. Again, from the set of equationss2.22d it is clear
that cubic anharmonicity plays a lead role in inducing noise-
driven instability and spatial inhomogeneity for additive
noise.

In what follows, we examine in the next section two
simple examples dominated by cubic nonlinearity. For initia-
tion of stationary pattern formation we also explore the role
of long-range diffusion in one of these models.

III. SPECIFIC EXAMPLES AND NUMERICAL
SIMULATIONS

A. The arsenous acid–iodate system

The arsenous acid–iodate modelf17,18g is actually a
composite of two reactions, viz., the Dushman reaction and
the Roebuck reaction. This model has received attention over
the last three decades for the study of wave-front propaga-
tion. In later years, the model was simplified into a one-
variable systemf17g. Here, we carry out a study of the one-
variable system in the presence of additive noise in a two-
dimensional space. The chemical reaction under
consideration isf18g

IO3
− + 3H3AsO3 + 5I− → 6I− + 3H3AsO4.

The rate equation for this reaction has been deciphered to be
f19g
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dfI−g
dt

= ska + kbfI−gdfI−gsfIO3
−g0 − fI−gdfH+g2. s3.1d

With fI−g=u, our variable of interest,fH+g=h, a constant,
andfIO3

−g0= I0, the initial arsenous acid concentration, a con-
stant,ka=k1 andkb=k2, the kinetic constants, the rate equa-
tion now takes the form

du

dt
= sk1 + k2udusI0 − udh2 = fsud. s3.2d

The above equation admits of three steady states of the dy-
namics, viz.,

u0 = I0,−
k1

k2
,0. s3.3d

Adding the diffusion terms and an additive noise term, we
have

du

dt
= k1I0h

2u − k1h
2u2 + k2I0h

2u2 − k2h
2u3 + DSd2u

dx2 +
d2u

dy2D
+ h. s3.4d

Proceeding as we did in Sec. II, we have

fu = sk1 + k2udsI0 − udh2 + k2usI0 − udh2 − sk1 + k2uduh2.

s3.5d

The experimentally admissible parametersf19g are given
by k1=4.53103M−3 s−1; k2=1.03108M−4 s−1, D=2310−5

cm2 s−1, I0=5.0310−3M, andh=7.1310−3M.
At the steady statessay, foru0= I0d, we have in our earlier

notationfu=−sk1+k2I0dI0h
2, a negative quantity, indicating a

homogeneous stable state. The dispersion relation, i.e., the
variation ofl vs k2, is given byl3=3sfu−Dk2+2CId, since
all otherli’s si =1,2,4,5,…d are negative, andCE=0, the mul-
tiplicative noise being absent. For the given set of parameters
the instability sets in for the noise strengthCI .0.0635.

In order to examine the stability analysis numerically we
now use the explicit Euler method for the integration of the
stochastic partial differential equations3.4d, following the
discretization of space and time. A finite system size of
1283128 points, with periodic boundary conditions has
been chosen. A time intervalDt=0.005 and a cell sizeDx
=1.0 have been found to be appropriate for the purpose. The
noise has been discretized and simulated by means of a ran-
dom Gaussian noise generator. We have carried out our nu-
merical simulations for different values ofCI, ranging from
0.0 to 20.0. It has been observed that in the above parameter
range, there is a significant change of state from homogene-
ity fFig. 1scdg, to an inhomogeneous state with a notable
spatial patternfFig. 1sddg. A comparison between the disper-
sion relations in terms of the plots ofl3 vs k2 fFigs. 1sad and
1sbdg and the numerical simulation forCI =0.0 and CI
=0.0645 fFigs. 1scd and 1sddg indicates that these results
agree very well with the predictions made by our analysis.

B. The Swift-Hohenberg equation

The Swift-Hohenberg system is a nonlinear model of the
reaction-diffusion system used to study the Rayleigh-Benard

convectionf7,8,20–22g. The model characterized by a cubic
nonlinearity and a higher-order diffusion termsthe Swift-
Hohenberg coupling termd f23g, written in terms of the com-
ponentusr ,td in two dimensions, is

dusr,td
dt

= Gu − s1 + ¹2d2u − u3 s3.6d

where G is a control parameter. Numerical studies of the
system have been carried out by a number of groups. García-
Ojalvo et al. f8g have shown numerically simulated pattern
formation in the presence of multiplicative and additive
noise terms and also a linear stability analysis in the presence
of multiplicative noise. While the earlier analysis is based on
structure functions within linear approximation, here we pro-
vide an explicit stability analysis for a system having both
types of noises in terms of higher-order moments and draw a
comparison to the numerical simulations in the various pa-
rameter ranges,

dusr,td
dt

= fG + jsr,tdgu − s1 + ¹2d2u − u3 + hsr,td s3.7d

where jsr ,td is a multiplicative noise andhsr ,td refers to
additive noise. Both of the noise processes are Gaussian and
white. The fluctuations of additive noise are of internal ori-
gin. On the other hand, the multiplicative noise describes the
external fluctuations in the temperature gradient. The pri-
mary aim of the model as well as the introduction of noise is
to understand the nature of shift of the boundary of instabil-
ity, which, for example, explains the transition of the system
from a homogeneous state to a convective ordered state. Pro-
ceeding as earlier, we get the discretized equations as

dsduid
dt

= fG + j − 1 + 2k2 − k4 − 3u0
2gsduid −

3

4
sduid3 + hi ,

s3.8d

FIG. 1. The arsenous acid–iodate system.sad Plot of l3 vs
k2 sli ,0, for i Þ3d; sbd time evolved spatial patterns for the pa-
rameter set mentioned in the text andCI =0.0, CE=0.0; scd plot of
l3 vs k2 sli ,0, for i Þ3d; sdd time evolved spatial patterns for the
parameter set mentioned in the text andCI =0.0645,CE=0.0.
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dsduid2

dt
= 2fG + j − 1 + 2k2 − k4 − 3u0

2gsduid2 −
3

2
sduid4

+ 2sduidhi , s3.9d

dsduid3

dt
= 3fG + j − 1 + 2k2 − k4 − 3u0

2gsduid3 −
9

4
sduid5

+ 3sduid2hi . s3.10d

Here,u0 is the steady state value of the concentration.

Averaging over the equations and considering solutions of
the moments, we have the following determinantal equation
for the eigenvalue problem:

*fsG − 1 + 2k2 − k4 − 3u0
2 + CEd − lg 0 −

3

4

2CI f2sG − 1 + 2k2 − k4 − 3u0
2d − lg 2CE

0 0 f3sG − 1 + 2k2 − k4 − 3u0
2 + 2CId − lg

* = 0.

s3.11d

It is to be noted that we consider only up to the third
moment, as the higher terms do not contribute toward the
noise effect, as elaborated in Sec. II. The eigenvalues are
given by

l1 = sG − 1 + 2k2 − k4 − 3u0
2 + CEd, s3.12d

l2 = 2sG − 1 + 2k2 − k4 − 3u0
2d, s3.13d

l3 = 3sG − 1 + 2k2 − k4 − 3u0
2 + 2CId. s3.14d

Now, for the real steady statesu0(0, ±sG−1d1/2) we must
have Gù1.0. We choose the homogeneous steady stateu0
=0 for the present analysis. Proceeding according to our ear-
lier stability analysis, we plot the dispersion relations as the

variation of eigenvaluesl1, l2, and l3 vs k2 in Fig. 2 for
G=0.37,CE=0.042, andCI =0.0042. The range ofk2 values
for which lsk2d is positive is shown. The largest eigenvalues
over a range of admissible wave numbers for different pa-
rameter values have been depicted in Figs. 3 and 4 in the
presence and absence of additive and multiplicative noises,
since the instability is ensured if the largest eigenvalue is
positive.

We now carry out numerical simulations on Eq.s3.7d us-
ing the explicit Euler method, with a system grid size of
1283128 cells and with periodic boundary conditions. A
time interval Dt=1.7310−3 and a mesh size,Dx=0.4870
were taken. The noises have been generated by means of a
random Gaussian noise generator. The multiplicative noise
has been used in the Stratonovich sense. The value of noise

FIG. 2. The Swift-Hohenberg model. Plot ofl1,l2, andl3 vs k2

for dimensionless parametersG=0.37,DE=0.01,DI =0.001.
FIG. 3. The Swift-Hohenberg model.sad Plot of l1 vs k2sl1

= 1
2l2= 1

3l3,0d; sbd time evolved spatial patterns for dimensionless
parametersG=0.37,DE=0.0, DI =0.0; scd plot of l3 vs k2sl1,l2

,0d; sdd time evolved spatial patterns for dimensionless parameters
G=0.37,DE=0.0,DI =0.001; sed plot of l1 vs k2sl2,0;0,l3

,l1d; sfd time evolved spatial patterns for dimensionless param-
etersG=0.37,DE=0.01,D1=0.001.
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that has been applied isDE=CEsDxd2 andDI =CIsDxd2.
We choose different values ofG, ranging from 0.37 to

−0.37, and withDE andDI varying between 0.0 and 0.1. It
has been observed that forG=0.37, there is a significant
change of state from homogeneityffor DI =0.0; Fig. 3sbdg to
an inhomogeneous state with a striped patternffor DI
=0.001; Fig. 3sddg. Again for the multiplicative noise with
strengthDE=0.01, the presence of additive noise with a finite
positive strength gives rise to a labyrinthine patternfFig.
3sfdg. A comment on Fig. 3sfd may be pertinent. We find that
this pattern is less developed than the one in Fig. 3sdd, al-
though the eigenvalue graph in Fig. 3sed is well inside the
instability region. A plausible reason is that the application of
both additive and multiplicative noises makes more than one
eigenvalue positivesl1,l3.0,l2,0d, which may result in
the interference of different noise-induced modes, thus lead-
ing to a blurring of patterns. The numerically simulated pat-
terns obtained forG=0.05, 0.0, and −0.05, and the corre-
sponding plots of dispersion relations are shown in Fig. 4.
The results of the numerical simulations show, in general, a
good conformation to the theoretical analysis.

IV. CONCLUSION

In this paper we have studied the effect of noise in induc-
ing instability on a homogeneous stable state of one-
component reaction-diffusion systems. It has been shown
that, while it is sufficient to consider the linear equation of
motion for the first moment of the spatiotemporal perturba-
tion for multiplicative noise, the analysis of higher-order mo-
ments is imperative in the case of additive noise for an un-
derstanding of the role of noise.

We now summarize the main conclusions of this study.

sid We have determined an analytical threshold condition
for the instability induced by additive noise on reaction-
diffusion systems. Our analysis is equipped to deal with mul-
tiplicative noise processes as well. The theoretical estimates
of the threshold in model systems correspond fairly well to
the results of numerical simulation studies.

sii d In contrast to mean field approaches, where the de-
tails of correlations are neglected, the instability conditions
derived by the present approach are based on higher-order
moments where coupling to lower orders is appropriately
taken care of.

siii d Our study indicates that the cubic and odd nonlin-
earities are of special type since their contribution is picked
up as the harmonic components that determine the structure
of stability matrix and dispersion relations. Since cubic non-
linearity is almost ubiquitous in all major areas of nonlinear
dynamics, we believe that the role played by this nonlinear-
ity in the context of additive noise, in inducing instability
and pattern formation, is generic and makes the perspective
of noise-induced transition much wider.

We hope this approach will be useful for exploring noise
in pattern formation and selection in spatially extended sys-
tems with more than one variable.
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APPENDIX

The s2n−1d component vectorLW and the matrixA of di-
mensions2n−1d3 s2n−1d are given by

LW =1
kfduigl
kfduig2l
kfduig3l
kfduig4l
kfduig5l

·

·

·

kfduig2n−1l

2 sA1d

and

FIG. 4. The Swift-Hohenberg model.sad Plot of l1 vs
k2sl2,l3,0d; sbd time evolved spatial patterns for dimensionless
parameters G=−0.05,DE=0.1, DI =0.001; scd plot of l3 vs
k2sl1,l2,0d; sdd time evolved spatial patterns for dimensionless
parameters G=0.05,DE=0.0, DI =0.001; sed plot of l3 vs
k2sl1,l2,0d; sfd time evolved spatial patterns for dimensionless
parametersG=0.0, DE=0.0, DI =0.001.
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A =1
ffu − Dk2 + CEg 0

1

8
fu3 0

1

4 ! 8
fu5 … 0 F 1

22n−2sn − 1d!
1

n!
fu2n−1G

2CI 2sfu − Dk2d 2CE
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